

# Simple and homothetic interferometric apodization using a Mach-Zehnder interferometer

# J. CHAFI<sup>1</sup>, Y. EL AZHARI<sup>1,2</sup>, O. AZAGROUZE<sup>1,2</sup>, A. JABIRI<sup>1</sup>, Z. BENKHALDOUN<sup>1,3</sup> and A. HABIB<sup>1,2</sup>.

<sup>1</sup>LPHEA, FSSM-Cadi Ayyad University, Marrakech. <sup>2</sup> CRMEF-Marrakech Av. Mouzdalifa, BP 797 Marrakech, Morocco.

<sup>3</sup>Oukaimeden Observatory, Cadi Ayyad University, Marrakech, Morocco



LABORATOIRE DE PHYSIQUE DES HAUTES ENERGIES **ET ASTROPHYSIQUE** 

# Introduction

Currently, several scientific projects are attempting to develop methods for the direct detection and characterization of extrasolar planets. Two major difficulties :

- the important contrast due to the difference in luminosity between the planet and its parent star  $(10^9)$ in the visible, 10<sup>6</sup> in the infrared);
- the small angular distance between the two objects which requires a high angular resolution.

To achieve this, one solution is to equip telescopes with a coronagraph and apodize its entrance pupil to focus a large part of the flux at the center. The apodization can be obtained using interferometric assemblies. We present laboratory results obtained with a MZI (1D) and homothetic (2D) interferometer.

# **Optimization**

The resulting amplitude of the recombination of the beams in the focal plane of the system is written as the sum of two PSFs :

 $\Phi(\mathfrak{u}) = \Psi(\mathfrak{u}) + \gamma \Psi(\eta \mathfrak{u}) = 2 \frac{J_1(\pi \mathfrak{u})}{\pi \mathfrak{u}} + 2\gamma \frac{J_1(\pi \mathfrak{u}\eta)}{\pi \mathfrak{u}\eta} (1)$ Where  $\gamma$  is the ratio of the amplitudes and  $\eta$  of spread.

We introduce the function  $epsilon(\gamma, \eta)$  which represents the percentage of the energy outside the central spot compared to the total energy in the focal plane, defined by :

> $\int_{n}^{u_{m}(\gamma,\eta)} I(u,\gamma,\eta) 2\pi r dr$ (2)



# **Mach-Zehnder interferometer**

Mach-Zehnder interferometer is a two-wave interferometer composed essentially of two mirrors and two semi-reflecting blades. It has the advantage of having two outputs, it allows to benefit from the totality of the incoming light. Moreover, these arms are traversed only once, which avoids the folding of the light on itself.



# Simple Apodization 1D





$$\epsilon(\gamma,\eta) = \frac{\int_0^{+\infty} I(u,\gamma,\eta) 2\pi r \, \mathrm{d}r}{\int_0^{+\infty} I(u,\gamma,\eta) 2\pi r \, \mathrm{d}r}$$

$$\epsilon_{max} = 93,6\%$$
,  $\gamma_{max} = 0,525$  et  $\eta_{max} = 0.625$ 

**Diffraction hole assembly** 



## Dimensioning

The dimensioning relations are written:

$$\phi_2 = \eta \phi_1$$
 et  $D_2 = TD_1$  avec  $T = \frac{\gamma^2}{\eta^2}$ 

### **Diffraction holes**

Table 1: The values of  $\phi_1$ ,  $\phi_2$ ,  $\gamma$ ,  $\eta$  and Transmission (T)

|          | $\phi_1(\mu m)$ | $\phi_2(\mu m)$ | η     | γ     | Transmission (T) |
|----------|-----------------|-----------------|-------|-------|------------------|
| Optimum  | 1000            | 625             | 0.625 | 0.525 | 0.704            |
| Standard | 1000            | 600             | 0.6   | 0.503 | 0.704            |

Transmission

Table 2: The values of  $\phi_1$ ,  $\phi_2$ ,  $\gamma$ ,  $\eta$ , Transmission (T) and ND



### **Experimental results**





(e) Result of the Montage I

(f) Result of the Montage II

|          | $\phi_1(\mu m)$ | $\phi_2(\mu m)$ | η     | $\gamma$ | Т     | ND           |    |               |
|----------|-----------------|-----------------|-------|----------|-------|--------------|----|---------------|
| Optimum  | 1000            | 625             | O.625 | 0.525    | 0.704 |              |    |               |
| Standard | 1000            | 600             | 0.6   | 0.498    | 0.69  | $ND_1 = 0.2$ | et | $ND_2 = 0.04$ |

### **Results of simulations**



Figure 2: Left: Radial sections of the normalized PSF intensities. Right: in Log.



• Realization of simple (1D) interferometric apodization using MZI.

# **Apodization by homothety**

### **Principe**



Figure 1: Principle of interferometric apodization

Optimization of apodization by homothety (simulation and dimensioning).

# Reference

- AZAGROUZE O., EL AZHARI Y., HABIB A., 2008, in Charbonnel C., Combes F., Samadi R., eds, Proc. Ann. Meeting French Soc. Astron. [1] Astrophys., p. 57 (http://proc.sf2a.asso.fr)
- EL AZHARI Y., AZAGROUZE O., MARTIN F., SOUMMER R., AIME C., 2005, in Aime C., Vakili F., eds, IAU Colloq. 200, Direct imaging |2| of exoplanets: science & techniques. Cambridge Univ. Press, Cambridge, p. 445
- CARLOTTI A., RICORT G., AIME C., EL AZHARI Y., AND SOUMMER R., Interferometric apodization of telescope apertures, Astronomy [3] and Astrophysics, 2008, 477, 329335.
- HABIB A., AZAGROUZE O., EL AZHARI Y., BENKHALDOUN Z. AND LAZREK M. et al. Monthly Notices of the Royal Astronomical |4| Society, Volume 406, Issue 4, pp. 2743-2748. 2010.
- AZAGROUZE, O. ; HABIB, A. EL AZHARI, Y. ; BENKHALDOUN, Z. LAZREK, M. Homothetic apodization of circular aperture HACA: [5]

simulation results Proceedings of the SPIE, Volume 7734, id. 77343I (2010).

chafi.jamal2@gmail.com