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ABSTRACT

By introducing a new and improved photometric mode identification formula for pul-

sating stars, we describe the effect of pulsation in the light output of a pulsating star.

The calculation we did shows the dependence of the variation in the observed lumi-

nosity on the surface area, surface normal and variation in temperature caused by

nonradial pulsation.

INTRODUCTION: Asteroseismology is a study of sesmic waves in stars with the aim

of using these to infer the interior physics of stars. Photometric mode identification is

very important in asteroseismology because the number of modes identified determines

the amount of information we get from a particular star. Watson(1987,1988) developed

analytic expression of observed flux for non radially pulsating stars. In his formalism,

Watson showed the relative importance of local temperature, geometry, pressure and

limbdarkening in the predicted surface flux changes. But in his calculation, he considered

at a particular layer τ = 2/3. Based on Watson (1987, 1988) and Medupe et al. (2009)

we developed an improved mode identification formula and we show the effect of all the

layers of the atmosphere in the light output of the pulsating star, where the top layer

contributes the most.

Basic Assumptions

Spherically Symmetric and hydrostatic equilibrium, Local thermodynamical equilibrium

(LTE), linear non-adiabatic and plane parallel atmosphere in a star. When a star pulsates:

• Surface Normal, Surface area and Temperature all vary.

Flux Variation

The surface flux coming out of a non-pulsating star is:

Fλ =

∫ ∫

µIλ(µ, φ)dΩ , (1)

where µ = cos θ is the directional cosine, Iλ is light intensity. A pulsating star has pertur-

bation in flux given by:

δFλ =

∫ ∫

µ0IλdδΩ +

∫ ∫

µ0δIλdΩ0 , (2)

where δ is linear perturbation.

δF

F
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1

F
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F

∫ ∫

µIλdδΩ . (3)

The New Photometric Mode Identification Formula

The variation in luminosity can be written as:

δLλ

Lλ(0)
=

δFλ
Fλ(0)

+
δAλ

Aλ
, (4)

where δAλ
Aλ

is the variation in the surface area. Then,
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where pl(µ) is the Legendre polynomial, Y m
l is the spherical harmonic function, Bλ is the

Planck’s function, l is the degree of the mode and specifies the number of surface nodes

and m is the azimuthal order of the mode that shows the number of nodal lines crossing

the symmetry axis of pulsation.

Results

Simplifying eqn. (5), the observed variation in luminosity for pulsating stars becomes:
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where,

f (µ) =

∫

∞

0

δr̃

r

dIλ
dτλ
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, (7)

and

g(µ) =

∫

∞

0

δr̃

r

Bλ

2Hλ(0)
(1−

τλ
µ
)dτλ, (8)

For radially oscillating stars where l = 0, the geometric term (the term in the square bracket) in the

above equation, the variation in the surface normal vanishes. The final equation for observed luminosity

is given above where it shows all the variations during non radial pulsation including the variation in

the surface normal, where this term vanishes for radial pulsation, variation in the surface area and

temperature

FIGURE 1: Top left panel: Figure showing how the temperature eigen function behaves in a star for an equilibrium

model with Teff = 8340K and logg = 4.3185. Bottom left panel: The displacement eigen function as a function of

pressure in the atmosphere of a pulsating star. Top right panel:Figure showing the behaviour of the displacement

eigen function as a function of optical depth τ in the atmosphere of the star. Bottom right panel: The variation in the

eigen function of opacity as a function of depth (logP ). Where the n values are related to frequency of pulsation.

FIGURE 2: Left panel: Figure showing how the displacement eigen behaves in a star for an equilibrium model with

Teff = 6430K and logg = 4.35. Right panel: The temperature eigen function as a function of optical depth τ in the

atmosphere of a pulsating star.

Conclusion

When a pulsating star is observed, there is a manifestation of changes in brightness. The observed

brightness changes are caused due to changes from geometric effects (distortion in the surface area,

for non radial pulsation, variation in the surface normal). Other changes that causes variation in bright-

ness are thermodynamical changes which are associated to optical depth perturbations and (Iν−Bν).
Hence, our calculations are developed by taking in to account the changes mentioned.
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